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Received 25 October 1976, in final form 6 January 1977 

Abstract. All empty space-times admitting a one-parameter group of motions and in which 
the Hamilton-Jacobi equation is (partially) separable are obtained. Several different cases 
of such empty space-times exist and the Riemann tensor is found to be either type D or N. 
The results presented here complete the search for empty space-times with separable 
Hamilton-Jacobi equation. 

1. Introduction 

The problem of solving the Hamilton-Jacobi equation by separation of variables has 
been studied extensively in the past (Liouville 1846, Stackel 1893). More recently a 
great deal of work has been carried out on the subject of the separability of the 
Hamilton-Jacobi equation in Riemannian spaces and, in particular, in the curved 
space-times of general relativity. Amongst the motivations for this work has been the 
need to study the behaviour of geodesics in order to find global properties of the 
underlying manifold and also the need to give covariant criteria for separability. 

The first of the more recent papers on the subject is written by Carter (1968) who 
studied space-times admitting a two-parameter Abelian group of motions and in which 
the Hamilton-Jacobi equation is separable. Carter solved the empty-space field 
equations, for such space-times, with and without the cosmological term and also the 
Einstein-Maxwell equations. In order to solve these equations completely Carter 
assumed the separability of the Klein-Gordon equation so obtaining further restric- 
tions on the form of the metric tensor. However, it is now known (Carter, private 
communication) that in empty space-times separability of the Klein-Gordon equation 
follows directly from the separability of the Hamilton-Jacobi equation. 

Later Woodhouse (1975) has shown that if a separable coordinate exists then it is 
adapted either to a Killing vector or to an eigenvector of a Killing tensor. He applies his 
results to space-times of Petrov type D. These results have been extended by Dietz 
(1976) to the case of separability of the Klein-Gordon equation. 

In the present paper the authors review the different possible cases of separability 
which arise for the Hamilton-Jacobi equation. It appears that the only case for which 
the empty-space solutions have not yet been found is the case when one coordinate is 
ignorable (i.e. adapted to a motion of the space-time) and one coordinate is separable. 
This case is studied in detail and the empty-space field equations solved. Unfortunately 
the solutions found are either of Petrov type D or of Petrov type N with non-diverging 
rays. They are therefore not new and are contained in either the type-D solutions of 
Kinnersley (1969) or the plane-fronted waves of Kundt (1961). 
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2. Classification of the different cases of separability and the corresponding canonical 
forms for the metric 

Let (M4, g )  be a four-dimensional pseudo-Riemannian manifold with Lorentz signa- 
ture (i.e. a space-time). A set of local coordinates will be denoted by xa,  LY = l ,  2,3,4.  

The Hamilton-Jacobi equation for a geodesic is 

gapS,,S,p - m = o (2.1) 

where gap are the contravariant components of the metric tensor, the comma denotes a 
partial derivative, and the constant m2 satisfies m 2 = 0 ,  m 2 > 0  and m 2 < 0  for null, 
time-like and space-like geodesics respectively, Canonical forms for gap have been 
constructed by Dietz (1976) under the hypothesis that the Hamilton-Jacobi equation, 
after multiplication by an integrating factor U, can be solved by (partial) separation of 
variables. The various canonical forms depend upon the number of separable coordi- 
nates and the number of ignorable coordinates admitted by the metric (i.e. coordinates 
adapted to an Abelian group of motions). In fact the ignorable coordinates appear 
linearly with constant coefficients in the solution S of the Hamilton-Jacobi equation 
and so the functional form of S can be used to specify both the form of the separation 
and the ignorable coordinates which are assumed to exist. For example 

s = s , ( X 1 ) + S Z ( X 2 , X 3 ) + k X 4  

is the case in which x4  is an ignorable coordinate and x ’ separates completely. Notice 
that the ignorable coordinates are trivially separable and the term ‘separable coordi- 
nate’ will be used here to refer to non-trivial separable coordinates only. 

It is found that in all cases the integrating factor U separates in exactly the same way 
as S (the ignorable coordinates do not, however, appear in Us0 that, for example, in the 
above case U = U l ( x l )  + U2(x2, x 3 ) ) .  Since U appears only as a conformal factor in the 
metric it is convenient to introduce a conformal metric gap by 

The various canonical forms for the conformal metric gap and the coordinate transfor- 
mations leaving these forms invariant are summarized in table 1. In table 1 indices a, b 
take the values 2 , 3  and 4, indices i, j take the values 3 and 4, and indices A, B take the 
values 1, 2. The arrows in table 1 indicate when one entry is a special case of the 
preceding entry and the E are all equal to *1 excepting in the fourth and fifth cases 
when can take the value zero corresponding to a null separable coordinate. Notice 
that S = S1(x1)+S2(x2)+S3(x3, x4) is also a special case of S = S l ( x ’ ,  x 2 ) + S 3 ( x 3 ,  x4). 

From table 1 it can be seen that if no ignorable coordinate exists then gap is 
reducible so that the space-time metric itself, i.e. gap, is conformally reducible. Such 
space-times have been discussed by Petrov (1969) and the corresponding Einstein 
empty-space field equations solved. The case S = S,(x ’) + S2(x2)  + k x 3  + k’x4 is the 
one discussed by Carter (1968) and the case S = Sl(x ’) + k x 2  + k’x3  + k”x4 leads 
to the space-time metrics discussed by Dautcourt et a1 (1961). This leaves the two 
cases in which one and only one ignorable coordinate occurs. Since S =  
Sl(x1)+S2(x2)+S3(n3)+kX4 is a special case of s = S l ( x ’ ) + S 2 ( x 2 ,  x3)+kx4 attention 
will now be confined to this latter case. 

= *1 the allowable transformations can be used, with a suitable choice of 
the functions x?’(xl) and xz’ (x2 ,  x 3 ) ,  to set g14 and g24 equal to zero and the general 

When 
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Table 1. Canonical forms for the different cases of separability. 

S Allowable transformations 

1 - x  +constant 
xo'=xa'(xZ, X3,X4) 

1 x +constant 
x +constant x2 '=  2 

xi '=xJ'(x3,  x4) 

1 - x  +constant 
x +constant 

- x  +constant 
- x  +anstant  

x2 '=  2 

x 3 ' -  3 

x4'- 4 

x'+constant if e l  =*I 
i fe l=O 

g;"X 2 ,  x 3, + s:s:f3x I )  

0 0 gI4(x1) 

Sl(x I )  + S2(x2, x3) + kx4 

.1 0 0 

0 

0 € 3  
Sl(X '1 + S2(x2) + S3(x3) + k X 4  

\g'4(x') g24(x2) g34(x3) g44 / 
with g44 =g:4(x1)+gp(x2)+gy(x3) 

1 
/ € ]  0 0 0 \ - x  +constant 

x 2 ' -  2 

x3'= x::(xI) +x; (x2)+cx3 
x4"=x: (x')+x: (XZ)+C'X4 

Sl(x I )  + S2(x2) + kx3 + k'x4 - x  +constant 

x 1' = xI,'(x 1) 

x2' = x:,(x 1) + cx2 
x3' = xi,(xI) +c'x3 
x4' = x: (XI) +c"x4 

& ( X I ,  X2)+S3(X3,X4)t 

gAB(x1,xZ) 0 0 xA'=xA'(xl,  XZ) 
xI'=xi'(x3,x4) i.; gi'(x3, 0 0  x4) 

0 0  

t This case has not been discussed elsewhere. 
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transformation of x 2  and x 3  can be used to introduce a geodesic coordinate system into 
the two-space 

22 23 

( i 2 3  i 3 3 ) '  

In order to fix it will now be assumed that the separable coordinate x ' is time-like so 
that cl = +l. Re-defining the functions the final form of the metric gap  which will be 
used in order to solve the Einstein field equations is 

O i  12 0 0 

0 0 -2A 2B 

0 -2 0 
(2.3) 

\O 0 2B -2F l  
where 

U =  U'(X')+ V(X2, x 3 ) ,  

A =A(x2x3), B =B(x2,x3) ,  

F = Fl(x ') +_F(x2, x 3 )  

and the factors 2 have been introduced for future convenience. This final form of the 
metric is invariant under the coordinate transformations 

x " = x + constant 
x 2 ' -  2 - x  +constant 
x3'=x3'(x3) 

x4 '=  constant +x$'(x3)+cx4 

i f A # O  ( 2 . 4 ~ )  

or 
x " = x ' +constant 

x 2' = x 2 + x 2'(x 3) 

x3' = 3'(x3) 

x4 '=  constant+x$'(x3)+cx4 

i f A = O  (2.4b) 

The case when the separable coordinate x '  is space-like can be inferred from the 
case discussed here by a complex transformation. In fact in certain of the solutions 
obtained the coordinate is necessarily space-like and a complex transformation has to 
be carried out before a space-time with the appropriate signature is obtained. Notice 
that if Fl(x')  is a constant then the metric becomes a special case of the metric 
corresponding to S = Sl(x ') + S2(x2, x 3 ,  x4). For this reason it will be assumed through- 
out the rest of this paper that Fl(x ') is non-constant. 

= 0, that is when the separable coordinate x1 is null, the allowable 
transformations can be used to reduce the metric g a p  to the form 

When 

10 0 0 1 \  

0 0 -2A 2B 

0 -2 0 

\ I  0 2B - 2 F l  
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where 
U =  u , ( x ' ) + ~ ( x ~ , x ~ ) ,  F = F ( x 2 ,  x 3 ) ,  

A = A ( x 2 , x 3 ) ,  B = B ( x 2 ,  x 3 ) .  

x " = x ' / c  +constant 
x 2 ' -  2 - x  +constant 

x 3' = x 3 ' ( x  3) 

x 4 ' -  - c  I x 1 +Xi(X3)+CX4. ' 

The form of this metric is invariant under the coordinate transformations 

3. The type-D solutions 

Solution of the Einstein empty-space field equations for the metric (2 .3)  with A # 0 
yields space-times of Petrov type D. In order to write down the field equations the null 
tetrad formalism introduced by Newman and Penrose (1962) will be used. The vectors 

in = (6: + s 3 / 2 ,  n', = (8:- s 3 / 2  
and 

6za = ~ ~ / ~ d - ~ / ~ [ e  +F'(B -d1'2i)e]/2, 

with d = A F - B 2 ,  form a null tetrad for the conformal metric inp associated with the 
space-time metric g a p  given by (2 .3) .  The intrinsic derivatives and non-zero spin 
coefficients for the tetrad are 

and 

6 = -p= -1 4F- 3'2 d 1/2 ,F,3 +$F-"2B(d-1d,3 +F-1,F,3 - 2B-1B,3) ,  

p" = ad-' (AF1,l -d,2),  6 = -id-'(AF1,1 +d,2),  

(FlJ -,F,2) +d-'/2B,21, E ' =  -$[Bd-1/2F-l 

5 = -$[Bd-1/2F-1(F1,1 +,F,~) -d-1'2~,2], 

c? =bF-'(F,2-F1,1)+ad-1(AF1,1 -d,2)-td-1'2i[BF-1(F1,1 -1;2)+B,2],  

h'= ~F-'(~,2+F1,1)-ad-'(AF1,1 +d,2)-td-1'2i[BF1(F1,1 +,F,2)-B,2]. 

Using the Newman-Penrose field equations and the connection, given in the 
appendix, between the tetrad components of the Ricci tensors of the conformally 
related metrics g n p  and gap it is found that two of the Einstein empty-space field 
equations, namely 4oo - 422 = 0 and Re(4,, + 421) = 0, can be written as 

(3 .1)  F1,1A 2 (F-B2/A) ,2  = 2d2U-2Ul, l  U,, 

and 
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From equation (3.1) it can be seen that In d -In U separates into the sum of a function 
of x 1  and a function of x2, x 3 .  Hence (In d -In U),,, = 0. Written out explicitly this 
condition becomes 

F1,1A2(F- B 2 / A ) , ,  = d2U-2U1,1g,2. 

Comparing this with equation (3.1) yields 

U1,l y,2 = 0 (3.3) 

and 

( F - B ~ / A ) , ,  = 0. 

Similarly equation (3.2) yields 

(3.4) 

and 

@‘- B2/A),3 = 0. (3.6)t 

Equations (3.4) and (3.6) give 

F = B ~ / A  (3.7) 
where a constant of integration has been absorbed into the function Fl(x’ ) .  It follows 
that the determinant d takes the simple form 

d =AF1. (3.8) 
From equations (3.3) and (3.5) it can be seen that two distinct cases arise: case 1, with 
U1,l # 0 and cJ,2 = y,3 = 0; case 2, with U1,l = 0. By absorbing a constant of integration 
into the function can be assumed to be zero in case 1. Similarly U1 can be 
assumed to be zero in case 2. 

The integration of the remaining field equations involves considerable algebraic 
manipulation and will be omitted here. The forms found, after simplification using the 
coordinate transformations (2.4a), for the various functions appearing in the metric 
(2 .3)  are listed below. 

Case l ( a )  

v= 0, B~ = AF, 

A = * [ ~ i n ( k ~ x ~ + f ( x ~ ) ) ] - ~  with k l  # 0 

[1+sin2(kIx 1) -2k3(k~+k~)-”2  sin(k,x’)] if k 2 # 0  

[ k3 sin(k lx ’) i f k l = O  

F1 =(k,-k;U;1)/(U;”2)~l. 

t It turns out that equations (3.3)-(3.6) are the further necessary and sufficient condition for the Klein- 
Gordon equation to separate. Hence, in this case, the empty-space field equations ensure that separability of 
the Hamilton-Jacobi equation implies separability of the Klein-Gordon equation. This is a special case of a 
general result found by Carter (private communication). 
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Case l ( b )  
v=o, B 2 = W  

A = * ( x ~ + ~ ( x ’ ) ) - ~  

F = k i ( x 2  + p  (x3))’ 

,‘?+ (k3x  1)4 if k Z # O  
U1 = 

[ k3x if k 2  = O t  
F1= ( k z -  k ~ U ~ l ) / ( U ~ l ’ ’ ) ~ l .  

Case 2 
U1 = 0, B~ = AF, 

F=O, 

if k l # O  

if k l  = 0. 

v i s  determined, in terms of elliptic integrals, from the equation 

- a ( x 3 ) -  k:U-’ 
and 

In the above the k are arbitrary constants and a (x3), p (x3) are arbitrary functions. In all 
cases the only non-vanishing null tetrad components of the Weyl tensor are Go, t,bz, t,b4. 
These satisfy t,b0t,b4 = 9$; and so the space-times are of Petrov type D. 

A = C X ( X ~ ) / ( U - ~ / ~ ) ? ~ .  

4. The plane-fronted waves 

Solution of the Einstein empty-space field equations for the metric (2.3) with A = 0 and 
for the metric (2.5) yields space-times of type N with non-diverging rays, that is 
plane-fronted waves. Again the calculations have all been carried out using the null 
tetrad formalism and the results are summarized below. 

Case 1 .  The metric (2.3) with A = 0: 
= 2 e2xz 

F = *sin(2x ’) + 277(x3) e2”(2x2 + k )  

B = e2’*. 

Case 2. The metric (2.5): 

B=O 

A = ( x 2 f p ( x 3 ) ) - ’  

if k l # O  

if k l  = 0. 
t In cases l(a) and l (b)  the metria with kz = 0 do not, in fact, have a normal hyperbolic signature. 
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F is determined from the equation 

F , 2 2 - i A - 1 F , 2 A , 2  + 2 A F , 3 3  + A , 3 F , 3  - 2k: = 0.  
Further details of the calculations can be obtained from the authors. 
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Appendix. Relations between conformally related tetrads 

Consider two comformally related metrics with 

gas = ui,a. 
Null tetrads can be chosen for the two metrics related by the following conformal 

transformations: 

It, = ~ " ~ i i ,  ; 1, = U 1, ; 

D = U-l/Zfi, A = u-1/2b, 8 = u-'/2S'. 

I.L = u - l / 2 @  + ; ~ - 3 / 2  bU 
= u-1/2j - b u - 3 / 2  bU 

p = u-1/2p + 4 ~ - 3 / 2  S'U 
= u-'/ZK' = u-'/2; 

(+ = u-l/2& = u-l/2/i 

m, = ~%i,, 1/2 - 
so that 

Using the commutation relationships the spin coefficients are found to be related as 
follows: 

= u-1/2~ - ; - ~ - 3 / 2  f iU 

E = u-1/2; + + u - 3 / 2  dU 

(y = u-1/2~ - + u - 3 / 2  BU 

= ~ - 1 / 2 f - ; u - 3 / 2  S'U 7T = u - ' / 2 +  +-1 2 u - 3 / 2 $ u  

and, using the Newman-Penrose field equations, the tetrad components of the Ricci 
tensor and the Ricci scalar are found to be related as follows: 
cpoo= u-'[Joo-$-' fifiu+apfiufiu-fu-' S'u/&;u-1 &K' 

411 = u-'{(Jll+$u-'[-b~u-s's'U+~u-' bubu+~u-'s'us'u-&l;-s'~; 

cp 10 - - u-'((Jlo-;u-' &ju+au-2&Jfiu+$J-1 fiuG+4u-'fiu&;~-' S'& 

4 1 2 =  u-'[J1~-;u-'~i\u+~u-2S'U~U+~U-~ iLJh5+&J-lS'ufi 

+iU- ' f iu( ;+P)]  

- buc + au; + b U ( j  + ;) + S'U(& 4)]} 

-;U-' &IC) 

-$U- 1 bU(Z +&)I 



Note added in proof. It can be shown that the metrics corresponding to case 1 are NUT 
metrics and possess four Killing vectors, whereas the metrics corresponding to case 2 
possess three Killing vectors. The Killing tensor associated with the separation in case 2 
is found to be a symmetrical product of the three Killing vectors and so the separation is 
simply a 'disguised' trivial separation. In case 1 this is not so. The authors are indebted 
to a referee, Dr N M J Woodhouse, for pointing out this possibility. 
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